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NOMENCLATURE 

dimensionless group defined by equation 
(14a) ; 
Chao’s dimensionless group defined by equa- 
tion (14b) ; 
effective pseudobinary diffusivity of solute A 
in the continuous and dispersed phases 
respectively ; 
radial component of the mass flux of solute A 

relative to the mass-average velocity; 
instantaneous surface-mean massiransfer co- 
efficients defined by equations (4) and (5) ; 
slope of equilibrium distribution isotherm, 

dp,dldp,; 
sphere radius ; 
surface area ; 
time ; 
approach velocity of continuous phase rela- 
tive to sphere ; 
cos 8. 

Greek symbols 
0, angular co-ordinate in direction of interfacial 

fluid motion ; 
I4 viscosity ; 
P. mass density ; 
PA. mass concentration of solute A; 

5, dimensionless time defined by equation (8). 

Subscripts 
A, solute under consideration ; 

c. continuous phase ; 
d dispersed phase ; 
S, separation point: 
0, at interface ; 
5. at large distance from interface. 

IN A RECENT article by Ruckenstein [8], time-dependent 
solutions were obtained for the species continuity equation 
as applied to the boundary-layer of a circulating spherical 
drop. These solutions were based on the steady velocity 
profiles as obtained from the creeping flow and potential 
flow approximations of the Navier-Stokes equation. In 
applying the surface-stretch model [l] to similar situations. 
it has come to our attention that the expressions obtained by 
Ruckenstein are applicable only to limited situations and 
consequently must be used with great care. In particular, 
equation (37), Ref. [S], for the case in which the droplet 
phase resistance is controlling, does not give a useful 
description of the mass-transfer process except over a very 
restricted range of P&let numbers. Also, equations (45) and 
(46), Ref. [S], are based on an unrealistic velocity profile in 
the interfacial region for moderate Reynolds numbers. 

THE SURFACE-STRETCH MODEL 

An equivalent to equation (34), Ref. [8], may be ob- 
tained by using the generalized surface-stretch modifica- 
tion of the penetration theory [l] as applied to circulating 
drops. Application of the surface-stretch model gives the 
flux through the surface for an arbitrary surface element 
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formed at time zero as: 

where 

dS = 2xR2 sin @de (2) 

dSo = 2nR2 SiII 0, de cl (3) 

and 0s and 6 are the angular coordinates of an arbitrary 
ring-shaped surface element at times zero and t respectively. 
The dispersed phase surface-average mass-transfer coefficient 
canbedefmedas: 

(4) 

The relation corresponding to equation (4) for the continuous 
phase is identical in form and can be obtained simply by 
using the effective solute diffusivity in the continuous phase 
gAAe in place of gAA, Since the Whitman two-film theory 
holds when the penetration theory is valid [I] we may also 
define an overzi! mass-tran&r coefficient 

where m is the slope of the equilibrium curve. Note that 
equation (5) defines a surface-mean instantaneous overall 
mass-transfer coefficient based on dispersed-phase con- 
centration units. It will also be convenient to define a 
Sherwood number Sh, by 

2RK, 
Sh, = -, 

D Ad 

Explicit relations for Sh,, can be obtained if the velocity 
profile is known. 

APPLICATION OF THE SURFACESTRETCH 
MODEL UNDER CREEPING-FLOW CONDITIONS 

We consider here a spherical drop in steady creeping 
flow through a quiescent external phase with the velocity 
distribution of Hadamard and Rybcxynski We assume the 
solute concentrations at zero time to be uniform within the 
drop and throughout the continuous phase. In addition 
we assume theaurface-stretch modification of the penetration 
theory (1) to be applicable. We thus obtain (see Appendix) : 

1 1 

’ 1 + m J(gAd/g~3 1 
I@) 

by application of equations (4)-(6). Here 

2V,R 
Pe, = 7; 

Ad 

g.,dt TZ--- 
R2 

(7) 

(8) 

and 

r’ e2”(l + x) 

I(az) = I [e”*(l + x) + 1 - xl4 
dx.~ (9) 

-12e”(l + x) - 4(1 - x) + 2 + 

I 

+ 

{e-(1 + x) + 1 - x}” 

x 

_1 

This expression for the Sherwood number is equivalent to 
equations (34) and (35), Ref. [II], and reduces to the same 
limiting expressions for very small and very large times. 

When the controlling resistance is in the dispersed phase, 
the above expression reduces to that of equation (37x 
Ref. [8]. Other approximate solutions for the problem of 
negligible extertfal phase resistance and creeping flow have 
been provided by Kronig and Brink [6] and by Johns and 
Beckman [5]. The latter solutions were obtained numerically 
for P6clet numbers from 0 to 640. Comparison of the various 
models with the numerical results obtained by Johns and 
Beckmarm for a representative P&&t number are presented 
in Fig. 1. 
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FIG. 1. Comparison of ditIerent”methods for calculating 
time-dependent Sherwood numbers. 
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It can be seen that for small times, equation (7) agrees 
exactly with the penetration theory. However, at intermediate 
times (not uncommon in industrial sieve-tray extractors) the 
agreement with the numerical results is poor. In the large- 
time, loge-P~let-numb limit, the results become exact 
only when agreeing with the Kronig and Brink theory 
(i.e. Pe, isr 1500). 

Agreement of the surface stretch theory with the results of 
Johns and Reckmann can be achieved only under limited 
circumstances. The probable cause of such disagreement is 
that the recirculation of the solute within the droplet is 
not adequately accounted for. This has also been evident in 
other systems such as falling films [4] in which the mass- 
transfer is limited in one phase. It appears then, that the 
only systems to which the above theory may be applied 
are those in which the continuous phase mass-transfer 
resistance is predominant. 

~P~CA~ON OF THE S~AC~~TCH 
MOREL AT HIGH REYNOLDS NUMBERS 

Although velocity profiles are not known in detail for 
high Reynolds number flows the boundary-layer solution of 
Chao [2] and Moore [7] is to be preferred over that obtained 
from potential flow theory. Such a solution provides the 
proper velocity and velocity-gradient behaviour in the inter- 
facial region, whereas the potential flow solution does not. 
Applicationofthesurface-stretchmodelusingthe“corrected” 
velocity profile at the interface gives, for negligible con- 
tinuous phase resistance (see Appendix): 

where 

f(-u) = 1 - x2 - 42 + X)” (1 - x) 

f(x*)dx* = X* - T - B@2 + .*)a 

5 
X” 

+ r21(4 - 3x*X2 + I*)+] 
x 

cosB _@-2+Bj(@f4) 
6- 2 - 

and 

b. (14a. b) 

The integration over .Y in equation (10) is to be performed 
at constant time; such a restraint being expressed in terms 
of.xandx,as: 

1 

i 

cj3, - J(2 -I- x) --_____.__ 
- Ve r = - G-z@” (43) - $2 + X0). 1 

1 --- 
2 t 343 

In J3) 1- J(2 + x) 

(J3) + J(2 i- x,) 

2 1 + x - +-ln -- B&2 + x) 

4 - 33a 1 + - xg I&/(2 + X0) 

-2J(2 J(B2 4B + X) -- B - + 4 + .~-_-- 

(4-3B?J(4+ B2) 

- (1% 

In the integral of equation (lo), 8, is that angle at which the 
interfacial velocity becomes equal to zero. It has been sug- 
gested by Winnikow and‘Choa [lOI that such a position be 
used as a rough estimate of the locus of boundary-layer 
separation. Thus, the expression for the Sherwood number in 
equation (10) does not contain the contribution from the 
zone of boundary-layer separation at the rear of the drop. 
This expression has been evaluated numerically, and the 
results for represen~~ve Reynolds numbers are shown in 
Fig. 2 along with Ruckenstein’s results for potential flow 
theory. 

Equation (10) simplifies to the proper limiting expressions 
for small and large time. For small time, the Sherwood 
number becomes equivalent to that given by the penetration 
theory [3]. i.e. 

(16) 

For large times, the limiting expression becomes 

- B r* ((3,f - (2 + cos &f’) + r: ((3)% 

- (4 - 3 cos es) (2 -t cos &)“}I 
i 
:. (17) 

VELOCITY TRANSIENTS 

The above correlations, like most of those available in the 
published literature [3, 5,6, S], are based on the assumption 
of steady-state flow. During a recent analysis of unsteady 
creeping flow [9] it has, however, come to our attention that 
transients in the interfacial velocity distribution could have 
a si~~c~t effect upon transient mass-tr~sfer behaviour. 
The utility uf equations (7) and (10) is therefore still subject 
todoubt,even when the predominant mass-transfer resistance 
is in the con~uous phase. The effect of velocity transients 
shouid be investigated further. 
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FIG. 2. Calculations based on the surface-stretch model for 
high Reynolds number flows. 
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APPENDIX 

Equations (7) and (17) can be obtained from equation (4) 
utilizing a prior knowledge of the tangential interfacial 
velocity for fluid-fluid spherical systems. From equations 
(2) and (3) we have : 

(ZJ, = (izig* (A.11 

where it must be remembered that the position 0 of any 

surface element can be expressed in terms of its original 
position &, and the time t. The change of position of a fluid 
element along the interface is given by : 

Where the tangential interfacial velocity for creeping flow is : 

1 PC 
(b)o = -- 

2k + pd 

V, sin 0. 

The “corrected” interfacial velocity for high Reynolds 
number flows is [lo] : 

Integrating equation (A.2) between the limits of r = 0 and 
r = T gives the expressions for (Z/Z$,), : 

4e” 

= [e”(l + c0s e,) + 1 - 00se,y (A.5) 

1 -cosZe-~2+cose)*(i -c0se) 

= 1 - cosfe, - ~(2 + cose,)*(i - 00se,)' (A.9 
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where (Z/X&), for high Reynolds numbers is an implicit 
function of 0, and r through equation (15) by replacing x by 
cos 6 and x,, by cos tJW 

Equation (7) follows readily from the substitution of equa- 
tion (AS) into equation (4) and subsequent manipulation. 
It is not feasible to obtain the analogous expression for the 
high Reynolds number case because equation (A.6) is only 
an implicit function of time. However, it is possible to obtain 
equation (10) from equation (4) by noting that: 

(d ~0s ‘%a 00 (A.7) 
Km90 

(d cos O),. (A.8) 

Equation (17) is the large time limiting case of equation (10) 
and is obtained merely be replacing the x0 of equation (10) 
by one. Physically, this means that for large time, only those 
surface elements formed very near the stagnation point 
(6 = 0) will measurably contribute to the mass-transfer 
process. 


